
TR WAD FILE FORMAT
Document Version 2.1

By IceBerg, Lisbon, Portugal, European Union
March 31, 2005

Based on Document Version 1.0
By Turbo Pascal, Tegucigalpa, Honduras, Central America

December 11, 2001

- i -

Disclaimer

“Tomb Raider” and “Lara Croft” are trademarks and property of Eidos / Core Design.
This document was not produced and is not supported by Eidos or Core Design.

- ii -

Blank page

- iii -

Foreword to version 2.1

Mainly correcting typing errors. This document was downloaded much more then I expected, so I
decided to give it a general clean-up...

IceBerg
Lisbon, Portugal
2005-03-31

Foreword to version 2.0

When I received an invitation from Turbo Pascal to become the developer of StrPix and the
carrier of “the torch”, my first reaction was of pleasure and honour.
My second reaction was of panic!
StrPix is widely used in the official TR community, developing a next version was a task of great
responsibility. And I knew nothing about TR4 geometry or about the structure of the WAD files.
And there was very little information about any of these subjects.

Fortunately, Turbo Pascal had published on-line a draft of the WAD file format, some years ago.
Written back in late 2001, that draft developed only the sections used by Turbo Pascal in his
Strpix3. Several other sections were not fully explained at the time. So I made some research and
experiments with WAD files, went over the document and completed or up-dated where needed.

This document is targeted to programmers and reflects my opinion about the internal structure of
the WAD file. There may be errors or misinterpretations in my research, so please use with
caution and please do report your own findings at the EZBoard Forum where most Tomb Raider
researchers can be found (http://pub84.ezboard.com/ftreditingzonefrm2). Please do not hesitate
in making an addenda or errata to this document.

Thanks to all those researchers who have been contributing with bits and pieces of information,
here and there, about the TR file formats. I’ve been taking notes

A very special thanks to Turbo Pascal. For your friendship and for sharing your findings with the
TR community. Without your first document this revision which I’m now proposing would have
never been started.

By publishing this new version of the TR Wad File Format document, I’m trying to give back to the
community some of the precious help I’ve been receiving from it.
May this effort be useful to other developers.

IceBerg
Lisbon, Portugal
2005-03-03

- iv -

Blank page

- v -

Introduction

This document was split in two chapters: “Quick Reference” and “Exploring the WAD File”. The
contents are basically the same, but “Quick Reference” is exactly what it states, and “Exploring…”
has a lot of extra comments and illustrations.

A new nomenclature, following recent orientations in the computer industry, is used to describe
some integer and real variable types1:

sint8 : Signed 8-bits [-128..127]
sint16 : Signed 16-bits [-32768..32767]
sint32 : Signed 32-bits [-2147483648..2147483647]

uint8 : Unsigned 8-bits [0..255]
uint16 : Unsigned 16-bits [0..65535]
uint32 : Unsigned 32-bits [0..4294967295]

single : single-precision floating point 32-bits
double : double-precision floating point 64-bits

In the text, used occasionally, references may be made to the
traditional bytes, words and dwords, respectively 8, 16 and 32
bit unsigned integers, mostly to define sizes.

Other changes from tradition:
The description of the Collision Sphere as a Bounding Sphere; renaming the Frames data as
Keyframes data; renaming the Mesh Trees as Pivot Links Data and associating them and the
Keyframes data with the Animation section instead of the Movables section; renaming the lighting
schemes as Normals/Shades; renaming a lot of fields in the Animation Section for clarity.

Softwares:
Turbo Pascal’s StrPix3.95R11, RView5.0R3, FexInspect1.0R0, FexAnim1.1; IceBerg’s HexDump;
TRWad’s WadMerger1.95A12; Popov’s TRViewer1.083; Raider Croft’s PixStr2.2R2; were used
together as research tools to help me understanding the WAD / TR4 file formats.

Bibliography:
Turbo Pascal’s original version of this document; his source code for StrPix3; his source code for
TRUnit3 and other related sources; the original TRosettaStone from 1999 and the revision by
Popov in 2003, which includes references to the TR4 file format; explanations and comments
published in discussion forums like EZBoard and Lara’s Home; also Michael Jelarcic’s manual for
TRwest; TRWad/Michiel’s manual for the Animation Editor in WADMerger.

1 See the “Discussion Topic 1 – Variables Nonsenseclature” for my comments on this subject.

- vi -

Blank page

INDEX

Blank page

TR WAD FILE FORMAT

Disclaimer --- - 1 -
Foreword --- - 3 -
Introduction --- - 5 -

Quick Reference

Section 1 – Version -- QR.1
File_ID -- QR.1

Section 2 – Textures -- QR.1
Num_Texture_Samples ---------------------- QR.1
Texture_Samples_Table ---------------------- QR.1
Texture_Data_Size ---------------------- QR.1
Texture_Map_Package ---------------------- QR.1

Section 3 – Meshes -- QR.2
Num_Mesh_Pointers ---------------------- QR.2
Mesh_Pointers_List ---------------------- QR.2
Meshes_Data_Size ---------------------- QR.2
Meshes_Data_Package ---------------------- QR.2

Section 4 – Animations --------------------------------- QR.6
Num_Animations ---------------------- QR.6
Animations_Table ---------------------- QR.6
Num_State_Changes ---------------------- QR.7
State_Changes_Table ---------------------- QR.7
Num_Dispatches ---------------------- QR.7
Dispatches_Table ---------------------- QR.7
Commands_Data_Size ---------------------- QR.7
Commands_Data_Package ---------------------- QR.7
Links_Data_Size ---------------------- QR.8
Links_Data_Package ---------------------- QR.8
Keyframes_Data_Size ---------------------- QR.8
Keyframes_Data_Package ---------------------- QR.8

Section 5 – Models -- QR.9
Num_Movables --------------------------------- QR.9
Movables_Table --------------------------------- QR.9
Num_Statics --------------------------------- QR.9
Statics_Table --------------------------------- QR.9

Exploring the WAD File

The WAD file format -- WAD.1

Section 1 – Version -- WAD.3
File_ID -- WAD.3

Section 2 – Textures -- WAD.5
Num_Texture_Samples ---------------------- WAD.5
Texture_Samples_Table ---------------------- WAD.5
Texture_Data_Size ---------------------- WAD.7
Texture_Map_Package ---------------------- WAD.7

Section 3 – Meshes -- WAD.9
Num_Mesh_Pointers ---------------------- WAD.9
Mesh_Pointers_List ---------------------- WAD.9
Meshes_Data_Size ---------------------- WAD.10
Meshes_Data_Package ---------------------- WAD.10

Bounding_Sphere ---------------------- WAD.11
Num_Vertices ---------------------- WAD.13
Vertices_Table ---------------------- WAD.13
Num Normals / NumShades ----------- WAD.15
Normals_Table ---------------------- WAD.16
Shades_List ---------------------- WAD.18
Num_Polygons ---------------------- WAD.20
Polygons_Package ---------------------- WAD.20
Padding ---------------------- WAD.24

Section 4 – Animations --------------------------------- WAD.25
Num_Animations ---------------------- WAD.25
Animations_Table ---------------------- WAD.25
Num_State_Changes ---------------------- WAD.33
State_Changes_Table ---------------------- WAD.33
Num_Dispatches ---------------------- WAD.35
Dispatches_Table ---------------------- WAD.35
Commands_Data_Size ---------------------- WAD.38
Commands_Data_Package ---------------------- WAD.38
Links_Data_Size ---------------------- WAD.40
Links_Data_Package ---------------------- WAD.40
Keyframes_Data_Size ---------------------- WAD.47
Keyframes_Data_Package ---------------------- WAD.47

Section 5 – Models -- WAD.51
Num_Movables --------------------------------- WAD.51
Movables_Table --------------------------------- WAD.51
Num_Statics --------------------------------- WAD.53
Statics_Table --------------------------------- WAD.53

Discussion Topics

Topic 1 – Variables Nonsenseclature ---------------------- DT.1

Blank page

QUICK REFERENCE

Blank page

Quick Reference - QR.1 -

The Tomb Raider WAD file format

Section 1 – Version

File_ID (uint32).
A valid Tomb Raider WAD file has a value of 129 in its File_ID field.

Section 2 – Textures

Num_Texture_Samples (uint32).
Number of texture samples listed in the Texture_Samples_Table.

Texture_Samples_Table (Num_Texture_Samples * 8 bytes).
Records containing the position, size and attitude of each texture sample stored in the WAD file.
Each texture sample is defined by a rectangle whose anchor corner is located at its the top-left
pixel. Description:

x (uint8) anchor corner x pixel position.
y (uint8) anchor corner y pixel position.
page (uint16) page where the texture sample is stored.
flipX (sint8) horizontal flip, yes or no, -1 or 0.
addW (uint8) number of pixels to add to the width.
flipY (sint8) vertical flip, yes or no, -1 or 0.
addH (uint8) number of pixels to add to the height.

Texture_Num_Bytes (uint32).
The texture samples are packed into pages packed in a single Texture Map, whose total size in
bytes is given by Texture_Num_Bytes .

 Texture_Map_Package (Texture_Num_Bytes * 1 byte).
The Texture Map itself is stored as a standard RAW 24bits [R G B] pixel file.
Some dimensions of the texture map are known by default: the width is always 256 pixels, the
pixel format takes 3 bytes per pixel. The height of the texture map and the number of pages need
to be calculated.

number_of_pages = Texture_Num_Bytes div (256 * 256 * 3)

map_height = Texture_Num_Bytes div (256 * 3)

- QR.2 - Quick Reference

Section 3 – Meshes

Num_Mesh_Pointers (uint32).
Number of pointers stored in the Mesh_Pointers_List.

Mesh_Pointers_List (Num_Mesh_Pointers * 4 bytes).
Each record in this list is an offset to a mesh located in the Mesh_Data_Package. Description:

offset (uint32) offset of a mesh in the meshes package.

Meshes_Num_Words (uint32).
Size of the Meshes_Data_Package, expressed in word (uint16) units.

Meshes_Data_Package (Meshes_Num_Words * 2 bytes).
The mesh data package stores the meshes all together, as a single package. The individual
meshes in the package vary in size, but they all have the same internal structure:

Bounding_Sphere (10 bytes).
Coordinates of the centre, and the radius, of a bounding sphere used for
proximity testing in-game. Used by Movable Models only, Static Models
have zeros in these fields. Description:

cx (sint16) centre’s coordinate in x.
cy (sint16) centre’s coordinate in y.
cz (sint16) centre’s coordinate in z.
radius (uint16) radius of the sphere.
unk (uint16) unknown.

Num_Vertices (uint16).
Number of vertices in the mesh.

Vertices_Table (Num_Vertices * 6 bytes).
Table storing the XYZ coordinates of the vertices. Description:

vx (sint16) vertex coordinate in x.
vy (sint16) vertex coordinate in y.
vz (sint16) vertex coordinate in z.

Quick Reference - QR.3 -

Num_Normals / Num_Shades (sint16).
The value stored here has a different meaning depending on its sign. If
positive, it means Num_Normals, if negative it means Num_Shades.

Normals_Table (Num_Normals * 6 bytes).
Table with the XYZ lengths of the normal vectors attached to the vertices
of the mesh. Description:

lx (sint16) vector length in x.
ly (sint16) vertex length in y.
lz (sint16) vertex length in z.

To “normalize” this vector we need to divide each component by 16300.

nx (single) normalized vector length in x = lx / 16300.
ny (single) normalized vector length in y = ly / 16300.
nz (single) normalized vector length in z = lz / 16300.

Shades_List (Num_Shades * 2 bytes) * (-1).
The (minus one) is to turn positive a number that is stored as negative.
List of values representing a light intensity, a shade of grey affecting the
luminosity or the darkness of its correspondent vertex. Description:

shade (sint16) shade of grey for the vertex.

grey_intensity = 255 - shade * 255 / 8191

Num_Polygons (uint16).
Number of polygons in the mesh.

Polygons_Package (Num_Polygons * variable bytes).
We know the number of polygons, but that does not tell us the size of the
polygons data package because the WAD file stores triangles and quads
all mixed up. The structure of each polygon record is the following:

shape (uint16) a triangle, or a quad.
v1 (uint16) anchor vertex index.
v2 (uint16) next vertex index.
v3 (uint16) next vertex index.
v4 (uint16) next, only if quad.
texture (uint16) index and horizontal flip.
attributes (uint8) opacity and shine.
unk (uint8) unused byte.

The shape field tells us if the polygon is a triangle (8) or a quad (9).

- QR.4 - Quick Reference

The texture word, treated as a bit field, has the following meaning:

flipped texture and $8000 (1 bit) horizontal flipping.
shape texture and $7000 (3 bits) texture sample shape.
index texture and $0FFF (12 bits) texture sample index.

If bit [15] is set, as in (texture and $8000), it indicates that the texture
sample must be flipped horizontally prior to be used.

Bits [14..12] as in (texture and $7000), are used to store the texture
shape, given by: (texture and $7000) shr 12.
The valid values are: 0, 2, 4, 6, 7, as assigned to a square starting from
the top-left corner and going clockwise: 0, 2, 4, 6 represent the positions
of the square angle of the triangles, 7 represents a quad.

Bits [11..0] as in (texture and $0FFF), are used to store a texture index
to be used on the Texture_Samples_Table to find the sample’s bitmap.

The attributes byte, treated as a bit-field, stores the following data:

unk attributes and $80 (1 bit) not used?
intensity attributes and $7C (5 bits)shine effect intensity.
shine attributes and $02 (1 bit) shine effect flag.
opacity attributes and $01 (1 bit) opacity mode.

Bit [7] as in (attributes and $80), apparently is not used. I’ve noticed
that, when forced to be set, it disables the shine effect.

Bits [6..2] as in (attributes and $7C), are used to store the intensity of
the shine effect. The highest the value, the more intense the effect is. A
field with 5 bits can store 32 values in the range [0..31].

If bit [1] is set, as in (attributes and $02), the shine effect is on.

Bit [0] as in (attributes and $01), is used to flag the opacity mode.
If this field is not set (bit value = 0) the texture is considered opaque and
the magenta colour is used to mark pixels that are to be made fully
transparent.
If this field is set (bit value = 1), then colours are treated as translucent,
after converting the magenta colour, if any, to black.

Quick Reference - QR.5 -

Padding (uint16).
This field only exists if the number of quads is odd (not a multiple of 2)
as given by the logical test:

(number_of_quads mod 2) = 1

If this test is TRUE the remaining of the division by 2 is different from
zero (or it is equal to one, the only other possibility), meaning that the
number is odd. If so, a padding word must be added.
If the test is FALSE the remaining of the division by 2 is zero, meaning
that the number is even, and no padding is added.

And this completes the parsing of a mesh.

- QR.6 - Quick Reference

Section 4 – Animations

Num_Animations (uint32).
Number of animations stored in the Animations_Table.

Animations_Table (Num_Animations * 40 bytes).
This table stores all the animations for all the Movable Models in the WAD file. These animations
are in fact segments of the model’s actions.

keyframeOffset (uint32) offset in Keyframes_Data_Package.
frameDuration (uint8) engine ticks per frame.
keyframeSize (uint8) size of the keyframe record, in words.
state_ID (uint16) ID of the state of this animation.
unknown1 (sint16) unknown 2 bytes.
speed (sint16) ground speed.
acceleration (sint32) easy-in and easy-out for the speed.
unknown2 (sint64) unknown 8 bytes.
frameStart (uint16) [frame-in] index of this animation.
frameEnd (uint16) [frame-out] index of this animation.
nextAnimation (uint16) index of the default next animation.
frameIn (uint16) [frame-in] index of the next animation.
numStateChanges (uint16) number of animation transitions.
changesIndex (uint16) index in State_Changes_Table.
numCommands (uint16) number of commands.
commandOffsets (uint16) offset in Commands_Data_Package.

Each animation segment has a certain number of frames, every segment starts at a given frame
number, frameStart, and stops at a given frame number, frameEnd. The number of frames in the
animation segment, including keyframes and interpolated, is given by:

number_of_frames = frameEnd - frameStart + 1

The number of keyframes-only is not stored in the Animations_Table. It needs to be deduced
from the keyframeOffset of the current animation segment, from the keyframeOffset of the next
segment, and from the keyframeSize of the current segment converted to bytes.

num_keyframes = (keyframeOffset[i+1] - keyframeOffset[i]) div (2 * keyframeSize[i])

The last animation, the last keyframeOffset, has no next keyframeOffset, so the total size of the
Animations_Table must be used in the equation above as a “next offset”.

Quick Reference - QR.7 -

Num_State_Changes (uint32).
Number of records stored in the State_Changes_Table.

State_Changes_Table (Num_State_Changes * 6 bytes).
This table determines all the possible transitions between animations of different families, built in
by the designer of the game. Description:

state_ID (uint16) ID of the state of the next animation.
numDispatches (uint16) number of animation dispatches.
dispatchesIndex (uint16) index in the dispatches table.

Num_Dispatches (uint32).
Number of records stored in the Dispatches_Table.

Dispatches_Table (Num_Dispatches * 8 bytes).
This table stores all the possible transitions between animations of different families, built in by the
designer of the game. Description:

inRange (uint16) [frame-in] where this range starts, inclusive.
outRange (uint16)] frame-out [where this range stops, exclusive.
nextAnim (uint16) index of the next animation in the Animations_Table.
frameIn (uint16) [frame-in] index of the next animation.

Commands_Num_Words (uint32).
Size of the Commands_Data_Package, expressed in word (uint16) units.

Commands_Data_Package (Commands_Num_Words * 2 bytes).
This package stores all the commands for all the animation segments in the Animations_Table.
It needs to be parsed. The structure of each command record is the following:

command (uint16) command’s code.
operator1 (uint16) first operator, if applicable.
operator2 (uint16) second operator, if applicable.
operator3 (uint16) third operator, if applicable.

The “if applicable” is there precisely because the record has a variable
size. Some commands have no operators, some have two or three.

- QR.8 - Quick Reference

Links_Num_DWords (uint32).
Number of integers (sint32) in the Links_Data_Package.

Links_Data_Package (Links_Num_DWords * 4 bytes).
The integers in the package are organized in records, each record being a Pivot Link consisting
of four sint32 integers describing the hierarchy and the relative offsets of the pivot points for a 3D
model. Description of each record:

opCode (sint32) stack operation code.
dx (sint32) mesh offset in x.
dy (sint32) mesh offset in y.
dz (sint32) mesh offset in z.

The opCode takes the values 0, 1, 2, 3, where:
0 = stack not used. Link the current mesh to the previous mesh.
1 = pull the parent from the stack. Link the current mesh to the parent.
2 = push the parent into the stack. Link the current mesh to the parent.
3 = read the parent in the stack. Link the current mesh to the parent.

Keyframes_Num_Words (uint32).
Size of the Keyframes_Data_Package, expressed in word (uint16) units.

Keyframes_Data_Package (Keyframes_Num_Words * 2 bytes).
This package stores all the bounding boxes, root mesh offsets and pivot angles for all the
animation segments in the Animations_Table. Description:

bb1x (sint16) coordinate, bounding box.
bb2x (sint16) coordinate, bounding box.
bb1y (sint16) coordinate, bounding box.
bb2y (sint16) coordinate, bounding box.
bb1z (sint16) coordinate, bounding box.
bb2z (sint16) coordinate, bounding box.
offx (sint16) coordinate, root mesh offset.
offy (sint16) coordinate, root mesh offset.
offz (sint16) coordinate, root mesh offset.
keys (variable words) package of pivot point angles.

The pivot point angles are coded as sets of three rotations [rotateX, rotateY, rotateZ]. In some
cases only one axis is rotated, the other rotations being zero [rotateX, 0, 0] or [0, rotateY, 0] or [
0, 0, rotateZ]. In all, there are four different possibilities. If the angle set specifies a three-axes
rotation, a uint32 is used to store the set (angle_set = word * $10000 + next_word). If the
angle set specifies a one-axis rotation, a unit16 is used. To detect which is the case, while
parsing the angles package, test the value of axes = angle_set and $C000.
if axes = $0000 then it is a three-axes rotation and the lower 30 bits of the uint32 code the 3
rotations, at 10 bits per rotation. If axes = $4000 then it is a rotateX, if axes = $8000 then it is a
rotateY, if axes = $C000 then it is a rotateZ. The rotation value is stored in the lower 14 bits of the
unit16. Having extracted the rotation values, their values in degrees are obtained through the
following conversions:
For a three-axes rotation a value of 1024 is equivalent to 360 degrees.
For a one-axis rotation a value of 4096 is equivalent to 360 degrees.

Quick Reference - QR.9 -

 Section 5 – Models

Num_Movables (uint32).
Number of Movable Models stored in the Movables_Table.

Movables_Table (Num_Movables * 18 bytes).
This table is the entry point to access the Movable Models in the WAD. The indexes and offsets it
contains are used to fetch data from the other tables and packages. Description:

obj_ID (uint32) unique ID number for this Movable.
numPointers (uint16) number of mesh pointers.
pointersIndex (uint16) index to the pointers list.
linksIndex (uint32) index to the pivot point links package.
keyframeOffset (uint32) offset in the keyframes package.
animsIndex (sint16) index in the animations table.

Num_Statics (uint32).
Number of Static Models stored in the Statics_Table.

Statics_Table (Num_Statics * 32 bytes).
This table is the entry point to access the Static Models in the WAD. Description:

obj_ID (uint32) unique ID number for this Static.
pointersIndex (uint16) index of a pointer to the mesh.
vx1 (sint16) coordinate, visibility bounding box.
vx2 (sint16) coordinate, visibility bounding box.
vy1 (sint16) coordinate, visibility bounding box.
vy2 (sint16) coordinate, visibility bounding box.
vz1 (sint16) coordinate, visibility bounding box.
vz2 (sint16) coordinate, visibility bounding box.
cx1 (sint16) coordinate, collision bounding box.
cx2 (sint16) coordinate, collision bounding box.
cy1 (sint16) coordinate, collision bounding box.
cy2 (sint16) coordinate, collision bounding box.
cz1 (sint16) coordinate, collision bounding box.
cz2 (sint16) coordinate, collision bounding box.
flags (uint16) some flags.

- QR.10 - Quick Reference

Blank page

EXPLORING THE WAD FILE

Blank page

Exploring the WAD File - WAD.1 -

The Tomb Raider WAD file format

The WAD file stores 3D objects, together with their textures and animations, to be used with the
official Tomb Raider Level Editor (TRLE). Whereas the TR4 is a playable file format, the WAD is
a storage file format2.

For the purposes of this document, the WAD file was divided in 5 main sections, representing the
different logical groups contained in this file format:

Section 1 – Version

Section 2 – Textures

Section 3 – Meshes

Section 4 – Animations

Section 5 – Models

2 Other formats are involved in building up a playable TR4 file: *.CD for soundtracks, *.LAR for Lara’s
animations, *.SAM and *.SFX for sound files, *.SWD for image files, eventually some *.BMP, *.TGA and
*.TXT, there may be *.RAW for sky graphics, *.PRJ for TRLE projects, *.TOM for rendered projects.
The *.WAS file contains names for the models in the respective *.WAD file. This file is not needed for
TRLE despite of apparently being requested. The WAD file can be loaded directly without the WAS file.
On the other hand, the OBJECTS.H file is needed for TRLE to work.

WAD

TEXTURES 3D GEOMETRY ANIMATIONS MODELS

OTHER TRLE RELATED FILES
TR4

LEVEL

- WAD.2 - Exploring the WAD File

Blank page

Exploring the WAD File - WAD.3 -

Section 1 – Version

File_ID (uint32).
A valid Tomb Raider WAD file has a value of 129 in its File_ID field3.

FIG. 1 - An exploratory application was developed while the WAD file was being studied. This application grew up as the
study progressed and suffered several modifications during the process.

3 This value of 129 is not exclusive of *.WAD files. The *.SWD files also have this value in their own
file_id fields. This value of 129 is in fact the meshes version, OBJECT_VERSION, defined in the
OBJECTS.H file that goes with TRLE.

- WAD.4 - Exploring the WAD File

Blank page

Exploring the WAD File - WAD.5 -

Section 2 – Textures

Num_Texture_Samples (uint32).
Number of texture samples listed in the Texture_Samples_Table.

Texture_Samples_Table (Num_Texture_Samples * 8 bytes).
Each record in the sample’s table contains the position, size and attitude of each texture sample
stored in the WAD file. Each texture sample is defined by a rectangle whose anchor corner is
located at its top-left pixel. Description:

x (uint8) anchor corner x pixel position.
y (uint8) anchor corner y pixel position.
page (uint16) page where the texture sample is stored.
flipX (sint8) horizontal flip, yes or no, -1 or 0.
addW (uint8) number of pixels to add to the width.
flipY (sint8) vertical flip, yes or no, -1 or 0.
addH (uint8) number of pixels to add to the height.

The sample’s (x, y) pixel coordinates are relative to the top-left corner the page where that
sample is stored.

The width of a texture sample is given by (width = 1 + addW), which includes one pixel for x plus
the additional pixels addW. The height of a texture sample, including a pixel for y, is given by
(height = 1 + addH).

Taking as an example the sample 0001 in the table below, we can see that its (x, y), its anchor
corner, is located at (192, 194) of page 0. The values of 15 under addW and addH are not the
width and the height of the texture sample, which are in fact 16, as explained above. The values
of -1 under flipX and flipY indicate that the sample must be flipped before being mapped4.

FIG. 2 - Interesting that first line, ALL ZEROS! What is it for? Most
likely this is just a NULL texture placeholder.

4 More about this in pages 13 and 14.

- WAD.6 - Exploring the WAD File

The page-relative coordinates can be converted into map-relative coordinates in order to locate
the texture sample in the Texture_Map. The conversion is given by:

mapX = x
mapY = y + 256 * page

In its own page, the sample’s bounding rectangle can be expressed by:

 Rect(x, y, x + (1 + addW), y + (1 + addH))

Relative to the Texture_Map, the sample’s bounding rectangle can be expressed by:

 Rect(mapX, mapY, mapX + width, mapY + height)

FIG. 3 - The picture on the left shows a texture map with two pages, each page with several samples. The picture on the
right shows exactly the same texture map, but with the grid turned on. The yellow 256 x 256 squares mark the pages. In
red, the bounding rectangles for each texture sample. These rectangles are generated by my exploratory application
using the formulas defined above.

Exploring the WAD File - WAD.7 -

Texture_Num_Bytes (uint32).
The texture samples are packed into texture pages. Each texture page is 256 * 256 pixels in size.
The texture pages are in turn stored as a single Texture Map, whose total size in bytes is given by
Texture_Num_Bytes.

 Texture_Map_Package (Texture_Num_Bytes * 1 byte).
The Texture Map itself is stored as a standard RAW 24bits [R G B] pixel file.
Some dimensions of the texture map are known by default: the width is always 256 pixels, the
pixel format always takes 3 bytes per pixel.

The height of the texture map and the number of pages need to be calculated.

map_height = (number_of_pages * 256)

Texture_Num_Bytes = map_width * (map_height) * pixel_depth

= 256 * (number_of_pages * 256) * 3

= number_of_pages * (256 * 256 * 3)

Given the value of Texture_Num_Bytes, the number of pages in the Texture Map can be
deduced from the above equation, as well as the height of the texture map in pixels.

map_height = number_of_pages * 256

= Texture_Num_Bytes * 256 div (256 * 256 * 3)

The standard RAW file format stores the 24bits RGB data as [R G B] in-buffer.
These values will need to be reversed when transferring data to a standard BMP bitmap, which
stores pixel data as [B G R] in-buffer.

The standard RAW file format stores its image as top-down (the first bytes in the file correspond
to the first pixels in the top-left corner of the image). The scanlines will need to be reversed when
transferring data to a standard BMP bitmap, whose scanlines are organized bottom-up (the first
bytes in the file correspond to the pixels in the bottom-left corner of the image).

number_of_pages = Texture_Num_Bytes div (256 * 256 * 3)

map_height = Texture_Num_Bytes div (256 * 3)

map_width = 256

pixel_depth = 3

- WAD.8 - Exploring the WAD File

With a depth of 24 bits, the Texture Map has no alpha channel. To define if a pixel is transparent
or not, the magenta colour RGB(255, 0, 255) is used to paint the transparent pixels. This is a
yes-or-no situation, transparent-or-not, there are no translucent levels.

TRLE will convert these 24-bit textures to its internal 32-bit textures by adding an extra channel to
store alpha information. The alpha channel is opaque except where magenta was found. After
storing the transparency information in the alpha channel the magenta colour is discarded,
changed into black in the RGB colour channels. Internally, TRLE uses the alpha channel to
produce transparency, not the magenta colour. In fact, the 32-bit texture map inside the TR4 level
file has no magenta at all.

FIG. 4 - The flipX and flipY values are both mostly -1, with only a few exceptions. This is equivalent to a 180 degrees
rotation, that would put the textures upside-down before being mapped.

Exploring the WAD File - WAD.9 -

Section 3 – Meshes

Num_Mesh_Pointers (uint32).
Number of pointers stored in the Mesh_Pointers_List.

Mesh_Pointers_List (Num_Mesh_Pointers * 4 bytes).
Each record in this list is an offset to a mesh located in the Mesh_Data_Package. Description:

offset (uint32) offset of a mesh in the meshes package.

The meshes are not referenced directly. The Mesh_Pointers_List is used instead, and a pointer
is extracted from it. This pointer represents the offset of the desired mesh from the beginning of
the mesh data package, as given by:

absolute_address_of_the_mesh[i] = beginning_of_the_package

+ Mesh_Pointers_List[i]

In many WAD files there are several different pointers offsetting to the same mesh. The “0” offset,
for instance, happens to be very much repeated. The same can happen with other values. In a
general way the number of pointers is greater then the number of meshes, not equal to it.

There is another way for looking at this list.
Given a 3D model made of several meshes, these meshes will be referenced
in the Mesh_Pointers_List . The pointers that refer to a certain 3D model are
grouped together. If a given 3D model has 15 meshes, then the list will have
15 sequencial pointers storing the offsets of those meshes. The meshes
themselves may be stored somewhere in a random way, but the pointers will
be grouped together. The structure of the list is related to the structure of the
3D model. It fills the model’ skeleton with meshes.

Another characteristic of this list is the repetition of the “zero” offset.
It actually points to a complex mesh, most of the times it points to a
representation of Lara’s left thigh. This makes no sense. No 3D model is
made of 15 left thighs. Another approach is facing this “zero” offset as a
dummy mesh, a placeholder. The sequence of “zeros” still relate to the
structure of the 3D model, but which are the true meshes, then?

In this case the true meshes are given by another 3D model, considered as
the main skin model. This introduces the possibility of associating animations
to a “dummy structure” and later on assigning a “true skin” to the dummies. In
fact, this introduces a skeletal hierarchy.

FIG. 5 - The mesh pointers list. The first 15 pointers, marked in maroon, belong to Lara. There
are 445 animations associated to this group. No meshes, however, as this scheme works like an
animated skeleton that must be associated to a skin.

- WAD.10 - Exploring the WAD File

Meshes_Num_Words (uint32).
Size of the Meshes_Data_Package, expressed in word (uint16) units. Given that a word takes
2 bytes, the total number of bytes used to store the mesh data is given by:

package_size_in_words = Meshes_Num_Words

package_size_in_bytes = 2 * Meshes_Num_Words

Meshes_Data_Package (Meshes_Num_Words * 2 bytes).
The mesh data package stores the meshes all together, as a single package. The WAD file has
no indications on how many meshes it stores.
The number of mesh pointers, Num_Mesh_Pointers, tells us nothing about this.

Some extra work will be needed to find out the number of meshes:

• Known the address of the beginning of the mesh package, known the size of the package, the
address of the end of the mesh package can be computed.

end_of_the_package = beginning_of_the_package

+ package_size_in_bytes

Then the package can be parsed for each mesh, and a counting of them can be kept while
parsing. The parsing finishes when the end_of_the_package is reached, and by then we will
know how many meshes were counted.

• Given the list of pointers, Mesh_Pointers_List, we can count the number of unique pointers,
disregarding the repetitions. A separated array can be created to associate a unique mesh
index to its mesh pointer (to its offset, in fact). This same array can have some more
dimensions and store the size of each mesh, the number of vertices per mesh, the number of
normal vectors or lighting shades per mesh, the number of polygons per mesh, and whatever
more the programmer needs.

FIG. 6 - An auxiliary table was built into my exploratory application to assist in searching
through the meshes: a meshes table. The WAD file does not have such meshes table, it only
has the pointers list.

Exploring the WAD File - WAD.11 -

The meshes in the package vary in size, but they all have the same internal structure:

Bounding_Sphere (10 bytes).
Coordinates of the centre, and the radius, of a bounding sphere used for
proximity testing in-game. Used by Movable Models only, Static Models
have zeros in these fields. Description:

cx (sint16) centre’s coordinate in x.
cy (sint16) centre’s coordinate in y.
cz (sint16) centre’s coordinate in z.
radius (uint16) radius of the sphere.
unk (uint16) unknown5.

A Movable Model may have several meshes, each one with its own
bounding sphere. Setting to zero the radius of the spheres disables their
collision detection capability. If all the spheres in a Movable are disabled,
then Lara can move through the object.

FIG. 7 - The Bounding Sphere is usually placed close to the object’s volumetric centre and
has a small radius, just enough to envelope the mesh.

The unknown field unk can be found in both Movables and Statics, and
only takes the values of 0 and 1. Most objects have a zero in this field,
which seems to be the default value.

5 The usual description of the Bounding Sphere states that its radius is a 32-bit integer. I found out that it
is not so. The radius is a uint16 (2 bytes). This raises a new question: what are the other 2 bytes?

- WAD.12 - Exploring the WAD File

It is not clear what this unk field does. The fact that it takes only two
values, 0 and 1, suggests that it is a flag. The fact that it also shows up in
Statics suggests that it is not related to the radius of the sphere, which
static models do not have.

FIG. 8 - Examples of both Movables and Statics which have a 1 in the unk field.

These are the meshes found in the original WAD files which have a one in this field:

ANGKOR: 147, 148, 149, 150, 151, 206, 232, 233, 242, 245, 246, 248.

CATACOMB: 117, 118, 119, 121, 155, 156, 157, 180, 234, 241, 242.

CITY: 115 .. 129, 185, 250, 251, 252, 253, 381, 396, 407.

CLEOPAL: 141, 142, 171, 184, 185, 187, 188, 189, 190, 191, 275, 276, 284.

COASTAL: 122, 147, 184, 185, 330, 336, 350.

GUARD: 130, 226, 236, 256, 395, 397, 400, 402, 410.

KARNAK: 169, 171, 172, 173, 174.

LIBRARY: 153, 213, 214, 215, 216, 323, 324, 329, 334, 339, 340 .. 344, 346, 349.

NEWCITY: 140 .. 154, 206, 271, 272, 273, 274, 402, 417, 428.

SETTOMB: 216, 228, 229, 230, 231, 232, 233, 234, 235, 236, 335.

TITLE: 133, 134, 135.

TUT1: 180, 181, 182, 297.

Exploring the WAD File - WAD.13 -

Num_Vertices (uint16).
Number of vertices in the mesh.

Vertices_Table (Num_Vertices * 6 bytes).
Table storing the XYZ coordinates of the vertices. Description:

vx (sint16) vertex coordinate in x.
vy (sint16) vertex coordinate in y.
vz (sint16) vertex coordinate in z.

These values are stored as signed 16-bit integers. These values may be
too big for the common DirectX, OpenGL or 3D applications to work with.
Most Tomb Raider dedicated applications are dividing these values by
100 or by 1000, turning them into single-precision floating-point values.

In the Texture_Map section we’ve seen that most texture samples have
both flip flags marked as -1, which is equivalent to a 180 degrees
rotation. Now we see something similar happening with the geometry. It
is upside down!

FIG. 9 - The textures go upside-down, the geometry is upside-down, so everything fits
together nicely. Now what? Are we supposed to turn ourselves upside-down as well?
Where did this idea came from?

X

Y

Z

- WAD.14 - Exploring the WAD File

If we do not rotate the textures and if we rotate the 3D space instead, we
at least get a more reasonable situation to deal with.

FIG. 10 - The origin of the axes is the pivot point of the mesh. The
coordinates of the vertices are relative to this point.

X

Y

Z

Exploring the WAD File - WAD.15 -

Num_Normals / Num_Shades (sint16).
The value stored here has a different meaning depending on its sign. If
positive, it means Num_Normals, if negative it means Num_Shades.

• Number of normal vectors of the mesh, one per vertex, to describe

how the faces are affected by external lights. This is the method used
by Movables.

• Number of shading values, one per vertex, to describe the vertex’s
own shading. This is the method used by Statics.

FIG. 11 - Normals vs. Shades: the light projected on the wall is caused by the motorbike’s
beam. But the Static that lies just in front of the beam remains dark. Statics use their own
internal shading values, they do not use external lighting. On the other hand, Lara and the
motorbike, which are Movables, show the influence of external lights located somewhere
behind and to the right of Lara’s position. (screen capture from TRLE).

- WAD.16 - Exploring the WAD File

Normals_Table (Num_Normals * 6 bytes).
Table with the XYZ lengths of the normal vectors attached to the vertices
of the mesh. This normal vector defines a direction. The more this vector
points to a light, the brighter the vertex will be. In the vicinity of that
vertex, the colour values found on the adjacent faces will be pulled up or
down towards the colour values of the external light. Description:

lx (sint16) vector length in x.
ly (sint16) vertex length in y.
lz (sint16) vertex length in z.

A normal vector like this one, which purpose is to define a direction, is
expected to have a “normalized” length, to be an “unary” vector :

lx ^ 2 + ly ^ 2 + lz ^ 2 = (vector_length) ^ 2 = 1

But, applying the above equation to the lx, ly, lz values stored in the
WAD file, we get a very different result, we get:

vector_length = 16300

To “normalize” this vector we need to divide each component by 16300.

nx (single) normalized vector length in x = lx / 16300.
ny (single) normalized vector length in y = ly / 16300.
nz (single) normalized vector length in z = lz / 16300.

FIG. 12 - The integer values in the Normals_Table need to be divided by 16300 to obtain
a vector of length = 1. Where is that “16300” coming from?

Exploring the WAD File - WAD.17 -

This “normal vector” business is quite relevant when making custom
wads. New geometries may be built with 3D/CAD applications, not every
mesh will have its normal vectors correct by default. If the normal vectors
are not properly oriented, shading errors will happen in-game.

FIG. 13 - The normal vectors in the head of this custom model are not correct (top insert).
They need to be recalculated, which can be done with STRPIX3.95R11 (bottom insert).
(custom wad by L.Croft - AOD Louvre - from Lara’s Level Base).

- WAD.18 - Exploring the WAD File

Shades_List (Num_Shades * 2 bytes) * (-1).
The (minus one) is to turn positive a number that is stored as negative.
List of values representing a light intensity, a shade of grey for each
vertex. The shade will affect the luminosity or the darkness of its
correspondent vertex. In the vicinity of that vertex, the colour values
found on the adjacent faces will be pulled up or down depending on the
value of the grey shade of the vertex.
Description:

shade (sint16) shade of grey for the vertex.

Representing shades of grey, these values would be expected to lie in a
range of [0..255], like the usual RGB colour space does. Nope! The
values are stored from darker to lighter in a range of [$1FFF..0]. Darker
is $1FFF and lighter is $0000, whereas in the RGB colour space darker is
$00 and lighter is $FF. Quite the opposite, and quite a difference in the
range of values.

FIG. 14 - The light on the wall is caused by the Lara’s flare. But the Static
that lies just in front of her remains dark. (screen capture from TRLE).

Exploring the WAD File - WAD.19 -

Some extra work will be needed to convert these values.
Given this scheme, that represents the relative position of the values…

… the following proportions can be extracted:

FIG. 15 - This is the Static, textures only, no shading applied.

Max Convert Min

$FF ………. grey ………. $00

$0000 ………. shade ………. $1FFF

 (grey - $00) ($FF - $00)
----------------------------- = ----------------------------
 (shade - $1FFF) ($0000 - $1FFF)

Resolving in order to extract the grey value:

(grey) * (- $1FFF) = (shade - $1FFF) * ($FF)

grey * $1FFF = $1FFF * $FF - shade * $FF

grey = $FF - shade * $FF / $1FFF

Replacing those computer-like hexadecimal values by their
human-like decimal equivalents:

grey = 255 - shade * 255 / 8191

- WAD.20 - Exploring the WAD File

Num_Polygons (uint16).
Number of polygons in the mesh.

Polygons_Package (Num_Polygons * variable bytes).
Yes, that’s correct. We know the number of polygons, but that does not
tell us the size of the polygons data package. That’s because the WAD
file stores triangles (with 3 vertices) and quads (with 4 vertices) all
mixed up. With no warning, each record can have, or not to have, a 4th
vertex. The only way for handling this is parsing all the way through and
keep counting polygons. While doing it, we need to keep a separated
count of the number of quads. That will tell us if there must be, or not,
an extra padding Word at the end of the polygons data package. If the
number of quads is even (multiple of 2) there is no padding. But if such
number is odd, then there will be one padding word.

The structure of each polygon record is the following:

shape (uint16) a triangle, or a quad.
v1 (uint16) anchor vertex index.
v2 (uint16) next vertex index.
v3 (uint16) next vertex index.
v4 (uint16) next, only if quad.
texture (uint16) index and horizontal flip.
attributes (uint8) opacity and shine.
unk (uint8) unused byte.

The shape field tells us if the polygon is a triangle (8) or a quad (9),
therefore if the record contains 3 or 4 vertex indices. These indices are
used on the Vertices_Data array to extract the actual XYZ coordinates of
the vertex.

Starting from the anchor vertex v1, the first vertex listed in the polygon’s
record, the other vertices are assigned in a clockwise manner, as seen
from the visible side of the polygon.

FIG. 16 - The vertices are assigned in a clockwise manner for the polygon to be visible.

V1
ANCHOR
VERTEX

V4

V2

V3

Exploring the WAD File - WAD.21 -

The texture word, treated as a bit field, has the following meaning:

flipped texture and $8000 (1 bit) horizontal flipping.
shape texture and $7000 (3 bits) texture sample shape.
index texture and $0FFF (12 bits) texture sample index.

If bit [15] is set, as in (texture and $8000), it indicates that the texture
sample must be flipped horizontally prior to be used.

Bits [14..12] as in (texture and $7000), are used to store the texture
shape. More details are given below.

Bits [11..0] as in (texture and $0FFF), are used to store a texture index
to be used on the Texture_Samples_Table to find the sample’s bitmap.

The texture shape is given by: (texture and $7000) shr 12
The valid values are: 0, 2, 4, 6, 7, as shown below.

0 = triangle DAB

2 = triangle ABC

4 = triangle BCD

6 = triangle CDA

7 = quad ABCD

If flipped = 0, the texture would be used like this:

If flipped = 1, the texture would be used like this:

FIG. 17 - The purpose of shape is to define the shape of the texture sample and how it
relates to the polygon’s shape. The red numbers above mark the anchor corner of the
texture sample for each texture shape.

A B

D C

0 2

4 6

7

0 2

4 6

7

- WAD.22 - Exploring the WAD File

The texture’s anchor corner goes to the polygon’s anchor vertex.
Then the next texture corner (a clockwise-next) goes to the next vertex
(also a clockwise-next).

FIG. 18 - Mapping a texture shape 4 on a polygon shape triangle. In practical terms, that’s
shape-to-shape, anchor-to-anchor, next-to-next. Clockwise.

To rotate a texture in the polygon, the sequence of vertices needs to be
shifted. If a sequence [v1, v2, v3] shifts to [v2, v3, v1], for example, v2
becomes the anchor vertex and the mapping is rotated clockwise.

FIG. 19 - The vertices themselves did not move, the geometry of the mesh was not
modified in any way. It was just their references in the polygon record that were shifted.
The texture’s anchor corner follows the anchor vertex.

V1
ANCHOR
VERTEX

C
ANCHOR
CORNER

V2

V3

B

D

V2
ANCHOR
VERTEX

V1

V3

Exploring the WAD File - WAD.23 -

The attributes byte, treated as a bit-field, stores the following data:

unk attributes and $80 (1 bit) not used?
intensity attributes and $7C (5 bits) shine effect intensity.
shine attributes and $02 (1 bit) shine effect flag.
opacity attributes and $01 (1 bit) opacity mode.

Bit [7] as in (attributes and $80), apparently is not used. I’ve noticed that, when
set, it disables the shine effect. I did not find any examples of this bit being used.

Bits [6..2] as in (attributes and $7C), are used to store the intensity of the
shine effect. The highest the value, the more intense the effect is. A field with 5
bits can store 32 values in the range [0..31].

If bit [1] is set, as in (attributes and $02), the shine effect is switched on.

Bit [0] as in (attributes and $01), is used to flag the opacity mode.
If this field is not set (bit value = 0) the texture is considered opaque and the
magenta colour is used to mark pixels that are to be made fully transparent.
If this field is set (bit value = 1), then colours are treated as translucent, after
converting the magenta colour, if any, to black.

Translucent textures, or colours, are processed as additive.
In this scheme, a translucent texture, processed on top of an opaque texture, will
have its colour values added to those of the texture below.
The darker the colour, the more transparent; the brighter the colour, the more
opaque. In the limits, black is completely transparent and white is completely
opaque. Adding colours makes the final result tend to white, which is the limit.

The Shine Effect can be used with Movables, only6. If set with Static Models, the
TR4 engine crashes. However, the Intensity can be set, even on Statics7.

6 I’ve found some objects, like the pistol gun or the laser accessory, which show up in the game’s menu,
with attributes = $02. This makes the shine effect turned on, but the intensity is set to zero! Why is the
shine effect flag on if there is no intensity?

7 I’ve found static models, which cannot use the shine effect, with the flag turned off, as it should, but with
an intensity value set! As in attributes = $40. Why is the intensity set, if there is no shinning?

- WAD.24 - Exploring the WAD File

Padding (uint16).
This field only exists if the number of quads is odd (not a multiple of 2) as given
by the logical test:

(number_of_quads mod 2) = 1

If this test is TRUE the remaining of the division by 2 is different from zero (or it is
equal to one, the only other possibility), meaning that the number is odd. If so, a
padding word must be added.
If the test is FALSE the remaining of the division by 2 is zero, meaning that the
number is even, and no padding is added.

This padding word, apparently, serves no useful purpose. But it is there, so it
must be taken in consideration, specially when building up new WAD files.

And this completes the parsing of a mesh.

FIG. 20 - Mesh pointers table, auxiliary data about the mesh package, collision sphere, vertices, normal vectors and
polygons. OpenGL window displaying one mesh and a texture reference.

Exploring the WAD File - WAD.25 -

Section 4 – Animations

Num_Animations (uint32).
Number of animations stored in the Animations_Table.

Animations_Table (Num_Animations * 40 bytes).
This table is the entry point to access the Animations stored in the WAD file. The indexes and the
offsets it contains are used to fetch data from other tables and packages.

These animations are in fact segments of the model’s actions. For example, a simple action like
“running” involves different segments of animation for “start running”, “running” and “stop running”.
The way how the animations are segmented and put together is the most complex subject in the
WAD file.

keyframeOffset (uint32) offset in Keyframes_Data_Package.
frameDuration (uint8) engine ticks per frame.
keyframeSize (uint8) size of the keyframe record, in words.
state_ID (uint16) ID of the state of this animation.
unknown1 (sint16) unknown 2 bytes.
speed (sint16) ground speed.
acceleration (sint32) easy-in and easy-out for the speed.
unknown2 (sint64) unknown 8 bytes.
frameStart (uint16) [frame-in] index of this animation.
frameEnd (uint16) [frame-out] index of this animation.
nextAnimation (uint16) index of the default next animation.
frameIn (uint16) [frame-in] index of the next animation.
numStateChanges (uint16) number of animation transitions.
changesIndex (uint16) index in State_Changes_Table.
numCommands (uint16) number of commands.
commandOffsets (uint16) offset in Commands_Data_Package.

Animations consist of sequences of frames, some of which are keyframes that determine the key
attitudes of the model, defined by the animator. The other are interpolated frames, in-betweens
computed from the keyframes.

Not going into details yet, the keyframe records that describe an animation are stored in a data
package, the Keyframes_Data_Package, and can be found by their offsets and record sizes. To
find every keyframe that belongs to a given animation, we need to know the keyframeOffset and
the keyframeSize of those keyframe records.

The rate at which the frames are shown is determined by frameDuration. The higher the value in
this field the slower the animation.

Some animation segments are interrelated, like “running” is related to “start running” and to “stop
running”, but not related to “jumping”, which will in turn be related to “start jumping” and to “stop
jumping”. The terminology used in the TRosettaStone to designate these families of animations is
state. The “state of running” comprises a family of animation segments that closely relate to the
“action of running”. Each animation segment in the Animations_Table belongs to one and only
one family. Each animation segment has a state_ID to identify its family.

The keyframe records in the Keyframes_Data_Package store the attitudes of the Movable Model
and its elevations relative to the ground level, but not how the model travels through the scenery.
The trajectory of the model is decided by the player at playing-time. However, the ground speed

- WAD.26 - Exploring the WAD File

and the ground acceleration of the model depend on the design of the animations. Some
animation segments may depict an action with zero ground speed. Lara is steady and points the
shotgun, for example. Other may have a ground speed but no ground acceleration, like Lara
running. Other may have no ground speed and have an acceleration, like Lara starting running.
These values are stored in speed and acceleration. The sint32 that stores the value of the
acceleration is in fact a pseudo floating point which codes its integer part in the upper sint16 and
its decimal part in the lower uint16.

Floating_point_value = acceleration / 65536

Each animation segment has a given number of frames, some of which will be keyframes and
some will be interpolated frames. Every segment starts at a given frame number, frameStart, and
stops at a given frame number, frameEnd. The total number of frames in the animation segment,
including keyframes and interpolated, is given by:

number_of_frames = frameEnd - frameStart + 1

The number of keyframes-only is not stored in the Animations_Table. It needs to be deduced
from the keyframeOffset of the current animation segment, from the keyframeOffset of the next
segment8, and from the keyframeSize of the current segment converted to bytes.

num_keyframes = (keyframeOffset[i+1] - keyframeOffset[i]) div (2 * keyframeSize[i])

Animation segments are displayed in sequence to produce natural actions. Some segments will
naturally follow other segments. When Lara is running, the most natural next action is to keep on
running. These natural next animation segments are the defaults if the game’s engine finds no
reason to do something else. These defaults are stored in nextAnimation and its entry point is
the frameIn.

But things may be different in-game. The player decides how to play. The game’s engine runs the
artificial intelligence of the NPC (non-player characters). Accidents happen. The state of the
animation may change from running to falling, or something else unexpected. The sequence of
animation segments no longer corresponds to the defaults, nextAnimation cannot help here.

The engine will know which is the “next animation” from the interpretation it makes from what’s
happening in the game. Now the engine needs to find out which are the animation segments that
make the transition from the current state to the next state requested by the game.

By design, there is only a certain number of possibilities for changing from the current state to
another state. Not all the combinations are available. The possibilities are stored in another table,
the State_Changes_Table.

In order to use it, we need to fetch some info from the Animations_Table. We need to know how
many state changes to investigate, numStateChanges, and where are they stored, as given by
their index, changesIndex.

Finally, while a given action is happening, some noises will be produced, some bubbles will be
emitted, some various additional special effects may happen. There are special commands
associated to those extra functions. These commands are packed into a
Commands_Data_Package and can be read knowing its number, numCommands, and the
location of the first command related to the current animation segment, commandsOffset. The
rest needs to be parsed.

8 The last animation, the last keyframeOffset, has no next keyframeOffset. The total size of the animation
table needs to be used instead.

Exploring the WAD File - WAD.27 -

Given the complexity of this Animation_Table with its complex fields and their complex relations
with other tables and packages, we will now follow an example: the Bat, movable model ID# 90 in
the GUARD WAD file.

FIG. 21 - The Bat and its location in the Animations_Table, highlighting its 6 animation segments.
Only the body of the table is stored in the WAD file. The two left columns are implemented by my exploratory application.

First we locate the Bat in the Movables_Table, then we read its animIndex, which is an index to
the Animations_Table. The index has the value 579. Now we read the animIndex of the model
after the Bat, which is 585. The number of animation segments assigned to the Bat is given by
585 - 579 = 6 or, expressing this as a range, animBat = [579 .. 584].

Now we locate the 6 animation segments [579 .. 584] in the Animations_Table (see FIG. 21).

Looking at the column for the state id we find out that there are 6 different states for the Bat’s
animations (see FIG. 22).

FIG. 22 - Part of the Animations_Table of the Bat model,
highlighting its 6 animation segments and concentrating in
the six state_ID for the Bat’s animations.

- WAD.28 - Exploring the WAD File

What are these states, what do they represent? Using my exploratory application to snapshot
some frames from the animations, we can see what those animations are about.

animation segment # 579 (1) Start flying.

animation segment # 580 (2) Flying.

animation segment # 581 (3) Attacking.

animation segment # 582 (4) Falling.

animation segment # 583 (5) Dying.

animation segment # 584 (6) Sleeping.

FIG. 23 - The six states for the Bat’s animations, displaying some frames from
the animation segments, the respective state id, and an interpretation of what
the animation is.

Each one of these animation segments has a natural next animation. Most likely “Sleeping” will
carry on “Sleeping”, “Start flying” will go to “Flying”, “Flying” will carry on “Flying”, eventually it will
go to “Attacking”, which in turn will eventually go to “Falling” and “Dying”. Exactly how all this
happens is stored in the Animations_Table under nextAnimation and frameIn.

FIG. 24 - Part of the Animations_Table of the Bat, highlighting its 6 animation
segments and concentrating in the nextAnimation and frameIn fields.

Exploring the WAD File - WAD.29 -

Inspecting the nextAnimation column we see that the animation segment 579 goes to the default
next animation 580. We also see that 580 goes to 580, it goes to itself. And so do the other, they
go to themselves.

FIG. 25 - A representation of the six animation segments of the Bat with their state_ID numbers,
and showing the default next animations for each segment, pointed to by the black arrows.

So now we know what the nextAnimation is about. But what is the meaning of the frameIn field?
Like in the animation segment 580, “Flying”, whose default next animation is 580 itself, and whose
frameIn is 19. What is this 19? It is the entry frame into the animation segment 580, but where is
that 19 coming from? To answer this we need to look into two other fields, frameStart and
frameEnd.

FIG. 26 - Part of the Animations_Table of the Bat, highlighting its 6 animation
segments and concentrating in the frameStart and frameEnd fields.

Inspecting these two columns we see that the animation segment 579 starts at frame 0 and ends
at frame 18, we see that the animation segment 580 starts at frame 19 and ends at frame 48, etc.
Crossing this with the “19” from FIG. 24, concerning the animation segment 580, we now see that
“19” is the first frame of the sequence. The complete interpretation of FIG. 24 is that the animation
segment 580 goes to itself by default, to its first frame. In other words, this animation loops.

(1) 579
 start flying

(6) 584
 sleeping

(2) 580
 flying

(3) 581
 attacking

(4) 582
 falling

(5) 583
 dying

- WAD.30 - Exploring the WAD File

From FIG. 26 we can find out how many frames each segment has. Segment 579 has frames in
the range [0 .. 18], segment 580 has frames in the range [19 .. 48], and so on, until segment
584 which has frames in the range [121 .. 124]. We’ve seen that the number of frames is given
by the equation:

number_of_frames = frameEnd - frameStart + 1

With this equation we find that segment 579 has 19 frames (18 - 0 + 1), that segment 580 has
30 frames (48 - 19 + 1), and so on, until segment 584 which has 4 frames (124 - 121 + 1).

FIG. 27 - A representation of the six animation segments of the Bat with their state_ID numbers and
each segment’s number of frames, and showing the default next animations for each segment,
pointed to by the black arrows.

We now have a better description of the animation segments, including their location and size, the
associated state id, and the default next animations and their entry frames. But we still don’t know
how the Bat changes from “Flying” to “Attacking”, we still don’t know how the several segments
connect with each other. To find out about this we need to look at two other fields, the
numStateChanges and the changesIndex.

FIG. 28 - Part of the Animations_Table of the Bat, highlighting its 6 animation
segments and concentrating in the numStateChanges and changesIndex
fields.

This is as far as we can go from within the Animations_Table. This storyline is to be continued in
another table, the State_Changes_Table, referenced by the two fields above.

(1) 579
start flying
[0 .. 18] = 19 frames

(6) 584
sleeping
[121 .. 124] = 4 frames

(3) 581
attacking
[49 .. 79] = 31 frames

(4) 582
falling
[80 .. 96] = 17 frames

(5) 583
dying
[97 .. 120] = 24 frames

(2) 580
flying
[19 .. 48] = 30 frames

Exploring the WAD File - WAD.31 -

Another complexity with the Animations_Table is how to access the keyframe records in the
Keyframes_Data_Package. To find the keyframes for the animation segment 579, “Start flying”,
we need to find the keyframeOffset for the segment 579, the keyframeOffset for the next
segment, and the keyframeSize for the segment 579.

FIG. 29 - Part of the Animations_Table of the Bat, highlighting its 6 animation
segments and concentrating in the keyframeOffset and keyframeSize fields.
Not included in the WAD file, my exploratory application adds a new column,
labelled nKeys, number of keyframes, showing the number of keyframes for
each animation segment.

Inspecting those columns in the Animation_Table we see that the keyframe records for the
animation segment 579 are located at 1,256,680 the keyframe records for the next segment are
located at 1,257,440 and the size of the keyframe records for the segment 579 is 20 words.

We’ve seen that the number of keyframes is given by the equation:

num_keyframes = (keyframeOffset[i+1] - keyframeOffset[i]) div (2 * keyframeSize[i])

Resolving this equation with the values found above, we have:

num_key_records_579 = (1257440 - 1256680) div (20 * 2) = 19

This is as far as we can go from within the Animations_Table. This storyline is to be continued in
another table, the Keyframes_Data_Package, using the offsets and the number of records
obtained above.

FIG. 30 - The “Flying” segment has a ground speed of 60 units.

The speed field is self-explanatory. The only segment with an important speed value, 60, is the
“Flying” animation. “Attacking” has a value of 3, just enough to keep some pressure on the target.

- WAD.32 - Exploring the WAD File

The acceleration field calls for some considerations. The only segment with a value in this field is
“Start flying”, animation segment 579. In 19 frames, [0 .. 18], or rather in 20 frames if we include
the first frame of the “Flying” segment 580, the Bat goes from an initial speed of 0 to a final speed
of 60. This gives an average increment of speed of 3 units per frame (60 div 20 = 3).

FIG. 31 – The “Start flying” animation segment 579 and part of the
Animations_Table of the Bat model, highlighting its 6 animation segments and
concentrating in the speed and acceleration fields.

If we now look into the value stored in the Animation_Table for segment 579, we find the value of
$2C71C, that can be converted to a floating point value by dividing it by $10000 (or 65536). This
gives us a value of 2.777771, close to the value of 3 that we calculated, but not equal to it.
I’ve no idea why this difference exists.

Exploring the WAD File - WAD.33 -

Num_State_Changes (uint32).
Number of records stored in the State_Changes_Table.

State_Changes_Table (Num_State_Changes * 6 bytes).
This table determines all the possible transitions between animations of different families, that
were built in by the designer of the game. Description:

state_ID (uint16) ID of the state of the next animation.
numDispatches (uint16) number of animation dispatches.
dispatchesIndex (uint16) index in the dispatches table.

The State_Changes_Table is accessed from the Animations_Table only, through the two fields
numStateChanges and changesIndex. The reason for accessing this table was to look for a
way for changing from the current state to a new target state. The state_ID field is scanned for
the desired target state. If it is found, processing carries on, otherwise this line of processing is
abandoned and no state changes will occur.

The State_Changes_Table is an intermediate table. The actual target animations associated to
the target state are stored in another table, the Dispatches_Table, which is referenced by the
numDispatches and by the dispatchesIndex fields.

Continuing with the storyline started in the Animations_Table, using the Bat as an example, we
can now look into the State_Changes_Table accessed from FIG. 28. The indices that were stored
in the changesIndex column of the Animations_Table can now be found here, in this state
changes table.

FIG. 32 - State_Changes_Table of the Bat, highlighting the entries
referenced from the Animations_Table, and in turn referencing the
Dispatches_Table.

One first detail to note is that, in the Animations_Table, under numStateChanges, we found the
values 1,3,2,1,0,1 as the number of state changes to investigate. This makes it a total of 8 state
changes, as given by 1 + 3 + 2 + 1 + 0 + 1, in the range [478 .. 485]. That’s precisely what we
have highlighted here in the State_Changes_Table.

- WAD.34 - Exploring the WAD File

Let’s keep in mind that we are trying to find out how to change from the current state to another
one. From the Animations_Table we gathered all the existing states for the Bat.
From the State_Changes_Table we gather the possible transitions to another state.
A graphical representation may help:

Animations_Table
Animation index 579 580 581 582 583 584

Current State Start flying Flying Attacking Falling Dying Sleeping

state_ID

numStateChanges

changesIndex 478 479 480 481 482 483 484 485

State_Changes_Table
Next State Flying Attacking Falling Dying Flying Falling Dying Start flying

state_ID

numDispatches

dispatchesIndex 565 566 567 568 569 570 571 572 573 574

FIG. 33 - Interrelations between the Animations_Table and the State_Changes_Table, concerning the state changes.

One table contains indices to access the next table, but what matters here is the relationship
between the initial states and the possible state transitions. For example, the “Flying” animation
segment 580 has a state_ID of 2, and has three possible transitions through indices 479, 480 and
481, leading to three possible target states, 3, 4 and 5. These are “Attacking”, “Falling” and
“Dying” (see FIG. 23). While the game was being played, something happened that caused the
engine to call for a new state. For example, the Bat was flying but Lara shot him down. The
engine detects the event and calls for “Falling” because the Bat was flying high above the ground.
The engine starts from state_ID = 2 and looks for a path to state_ID = 4. If it finds a path, the
transition will occur, otherwise the initial state is kept. In this case the engine can find a path
through changesIndex = 480, and processing will continue to the Dispatches_Table through
dispatchIndex = 567.

This is quite a complex process, but traceable.

This is as far as we can go now from within the State_Changes_Table. The next step involves
the Dispatches_Table, which is described next.

1 2 3 4 5 6

2 3 4 5 2 4 5 1

Exploring the WAD File - WAD.35 -

Num_Dispatches (uint32).
Number of records stored in the Dispatches_Table.

Dispatches_Table (Num_Dispatches * 8 bytes).
This table determines the animation segments associated to the possible next states.
This table is accessed from the State_Changes_Table, through the numDispatches and the
dispatchesIndex fields. Description:

inRange (uint16) [frame-in] where this range starts, inclusive.
outRange (uint16)]frame-out[where this range stops, exclusive.
nextAnim (uint16) index of the next animation in the Animations_Table.
frameIn (uint16) [frame-in] index of the next animation.

The Dispatches_Table defines a range of frames belonging to the current animation segment,
defined as [inRange, outRange [, where the frame-in is inclusive and the frame-out is exclusive.
If the engine reached this point, that’s because a path to the desired next state was found, and the
engine is trying to find the index to the nextAnim and its frameIn.
However, there is one more obstacle in the engine’s way.
In order to obtain the nextAnim from the Dispatches_Table, it is necessary that the current
frame of the current animation segment be within the limits of [inRange, outRange [.
If it is, then the game will change to the new animation, otherwise the game will carry on with the
same current animation and its default next animation, as defined in the Animations_Table.

Continuing with the storyline that uses the Bat as an example, we can now look into the
Dispatches_Table accessed from FIG. 32. The indices that were stored in the dispatchesIndex
column of the State_Changes_Table can now be found here, in this dispatches table.

FIG. 34 – Dispatches_Table of the Bat model, highlighting the entries
referenced from the State_Changes_Table, and in turn referencing
the Animation_Table.

It must be noted that, in the State_Changes_Table, under numDispatches, we found the values
of 1,1,1,1,2,2,1,1 as the number of dispatches for each state change. This makes it a total of 10
dispatches in the range [565 .. 574]. That’s precisely what we have highlighted here.

- WAD.36 - Exploring the WAD File

The graphical representation can now be completed:

Animations_Table
Animation index 579 580 581 582 583 584

Current State Start flying Flying Attacking Falling Dying Sleeping

state_ID

numStateChanges

changesIndex 478 479 480 481 482 483 484 485

State_Changes_Table
Next State Flying Attacking Falling Dying Flying Falling Dying Start flying

state_ID

numDispatches

dispatchesIndex 565 566 567 568 569 570 571 572 573 574

Dispatches_Table

nextAnim 580 581 582 583 580 580 582 582 583 579

Animations_Table

Animation index 580 581 582 583 580 580 582 582 583 579

Next animation Flying Attacking Falling Dying Flying Flying Falling Falling Dying Start flying

FIG. 35 - Interrelations between the Animations_Table, the State_Changes_Table, and the
Dispatches_Table, concerning the state changes and their related animation segments.

So the Bat was using the “Flying” animation segment 580, which has a state_ID = 2 and Lara shot
him down. Detecting the event, the engine issues out a request for the “Falling” animation, which
has a state_ID = 4. That’s because the Bat was flying high and must fall down before dying on the
ground. Another possibility would be the Bat flying low, in which case the engine would ask for the
“Dying” animation segment, state_ID = 5.

Looking into the Animations_Table, locating the proper entry for the Bat where state_ID = 2, the
current state, the engine finds three possibilities with indices from 479. Scanning through these
three possibilities in the State_Changes_Table, the first one is rejected because it leads to a

1 2 3 4 5 6

2 3 4 5 2 4 5 1

Exploring the WAD File - WAD.37 -

state_ID = 3, when the engine is looking for a 4. Then the engine scans the second possibility and
finds a state_ID = 4 under index 480. That’s a match.

The State_Changes_Table has one single dispatch associated to index 480. This dispatch is to
be found at index 567 of the Dispatches_Table.

Carrying on to the Dispatches_Table, the engine looks into index 567 of that table.
It finds a range of frames, [19 .. 49 [, and compares the current frame of the current animation
against that range. If the current frame is within that range, the engine gets to nextAnim = 582
and to frameIn = 80. The animation segment 582 is the “Falling” animation. If the current frame is
outside that range, the comparison test yields FALSE and the current animation continues until a
comparison test yields TRUE.

After a successful change of state, the new animation becomes the current animation and the
new state becomes the current state, and the storyline starts all over again.

FIG. 36 – A complete description of all the possible transitions between the states and animation
segments of the Bat. The default next animations are represented by the black arrows, the
dispatched next animations are represented by the red arrows.

(1) 579
 start flying

(6) 584
 sleeping

(2) 580
 flying

(3) 581
 attacking

(4) 582
 falling

(5) 583
 dying

Dispat 574
[121, 125 [

Dispat 569
[64, 65 [

Dispat 570
[79, 80 [

Dispat 566
[19, 49 [

Dispat 571
[64, 65 [

Dispat 572
[79, 80 [

Dispat 573
[80, 97 [

Dispat 568
[20, 49 [

Dispat 567
[19, 49 [

Dispat 565
[18, 19 [

- WAD.38 - Exploring the WAD File

Commands_Num_Words (uint32).
Size of the Commands_Data_Package, expressed in word (uint16) units. Given that a word
takes 2 bytes, the total number of bytes used to store the commands data is given by:

package_size_in_words = Commands_Num_Words

package_size_in_bytes = 2 * Commands_Num_Words

Commands_Data_Package (Commands_Num_Words * 2 bytes).
This package stores all the commands for all the animation segments in the Animations_Table.
By design, certain events are associated to certain frames. These events are coded into records
with different structures, depending on the event itself. The records having a variable size, there is
no way to tell how many commands the package has. It needs to be parsed.
The structure of each command record is the following:

command (uint16) command’s code.
operator1 (uint16) first operator, if applicable.
operator2 (uint16) second operator, if applicable.
operator3 (uint16) third operator, if applicable.

The “if applicable” is there precisely because the record has a variable
size. Some commands have no operators, some have two or three.

A quick run made with my exploratory application revealed that the valid commands are [1, 2, 3,
4, 5, 6] as reported in the TRosettaStone. All the original WAD files were inspected. My
exploratory application has a built-in alert in case any unknown commands are found in the
Commands_Data_Package. The only WAD file that fired the alert was KARNAK, which showed
a weird command structure. All the other showed a standard structure.

FIG. 37 – Commands_Table of the Bat, highlighting the commands referenced
in the Animations_Table.

Exploring the WAD File - WAD.39 -

So far the known commands and respective operators are, as extracted from the TRosettaStone
and from TRWad’s manual for the Animation Editor in WADMerger:

Command Operator1 Operator2 Operator3 DESCRIPTION
1 x y z Position reference
2 x or y y or z - Jumping reference
3 - - - Slaved animations, guns
4 - - - Some death animations
5 frame # sound ID - Play sound at frame
6 frame # $0000 0 - Change direction 180 deg.

“ $0001 1 - Soft earthquake
“ $0002 2 - Play flooding sound
“ $0003 3 - Make bubble
“ $0004 4 - End level
“ $0005 5 - Activate camera trigger
“ $0006 6 - Activate triggers
“ $0007 7 - Heavy earthquake
“ $0008 8 - Get crowbar
“ $000B 11 - Soft earthquake
“ $000C 12 - Disable guns
“ $000E 14 - Get right gun
“ $000F 15 - Get left gun
“ $0010 16 - Fire right gun
“ $0011 17 - Fire left gun
“ $0012 18 - MESHSWAP1
“ $0013 19 - MESHSWAP2
“ $0014 20 - MESHSWAP3
“ $0015 21 - ?
“ $0016 22 - ?
“ $0017 23 - Hide object
“ $0018 24 - Show object
“ $001A 26 - Remove ponytail
“ $0020 32 - ?
“ $0025 37 - ?
“ $0026 38 - ?
“ $002B 43 - Get waterskin
“ $002C 44 - Put back waterskin
“ $4020 16416 - Play step sound, land
“ $8020 -32736 - Play step sound, water

- WAD.40 - Exploring the WAD File

Links_Num_DWords (uint32).
Number of integers (sint32) in the Links_Data_Package.

total_size_in_bytes = Links_Num_DWords * 4

Links_Data_Package (Links_Num_DWords * 4 bytes).
The integers in the package are organized in records, each record being a Pivot Link consisting
of four sint32 integers describing the hierarchy and the relative offsets of the pivot points for a 3D
model. Description of each record:

opCode (sint32) stack operation code.
dx (sint32) mesh offset in x.
dy (sint32) mesh offset in y.
dz (sint32) mesh offset in z.

The opCode takes the values 0, 1, 2, 3, where:

0 = stack not used. Link the current mesh to the previous mesh.
1 = pull the parent from the stack. Link the current mesh to the parent.
2 = push the parent into the stack. Link the current mesh to the parent.
3 = read the parent from the stack. Link the current mesh to the parent.

A stack of meshes is used to “push”, “pull” or “read” meshes, to remember which is the parent to
the current mesh. The opCode defines what to do with the stack. Both “push” and “pull” modify
the stack, “read” does not.

The dx, dy and dz offsets define where the pivot point of the current mesh is placed, relative to
the pivot point of the parent mesh. For each movable, the sequence of the link records is taken
from the Links_Data_Package and the sequence of meshes is found through the sequence of
pointers in the Mesh_Pointers_List.

The first mesh found through the pointers list is taken as the root mesh, the one to which all the
other ones are connected, directly or indirectly. The world-offset of the root mesh is not included in
the Links_Data_Package, it is defined elsewhere in the Keyframes_Package.

These links are referenced in the Movables_Table by the index of their first integer, not by their
byte address. At four integers per record, the total number of records is given by9:

num_data_indices = Links_Num_DWords

num_records = num_data_indices div 4

9 I’ve found custom WAD files, processed by WadMerger, where the sequence of records is broken and the
formula above is not valid. At the end of a sequence of records there is some garbage, which moves the
next records further down, placing them off the “multiple of 4” table scheme. The records can still be
found and used correctly by TRLE because their indices are still properly stored in the Movables_Table,
which is the proper entrance door to the Links_Data_Package.
The original Eidos/Core WAD files do not have this problem, and the formula above is valid with them.

Exploring the WAD File - WAD.41 -

How does it work? Taking Lara as an example, her body is made of 15 Body Meshes, not
including the PONYTAIL which is a separate object:

HIPS (root)
LEFT THIGH

LEFT SHIN
LEFT FOOT

RIGHT THIGH
RIGHT SHIN

RIGHT FOOT
TORSO

RIGHT INNER ARM
RIGHT OUTER ARM

RIGHT HAND
LEFT INNER ARM

LEFT OUTER ARM
LEFT HAND

HEAD

These 15 meshes are connected through 14 Links.
There are also Joint Meshes, special meshes designed to fill the spaces left open between the
15 Body Meshes. We would expect these Joint Meshes to be 14, taking the same locations as the
14 Links themselves. But they are in fact 15. There is one more with the same coordinates as the
HIPS, to function as a root for the other Joint Meshes.

HIPS (root)
LEFT HIP

LEFT KNEE
LEFT ANKLE

RIGHT HIP
RIGHT KNEE

RIGHT ANKLE
PELVIS

RIGHT SHOULDER
RIGHT ELBOW

RIGHT WRIST
LEFT SHOULDER

LEFT ELBOW
LEFT WRIST

NECK

FIG. 38 – The 15 Body Meshes, the 14 Links, the 15 Joint Meshes in Lara’s body.

- WAD.42 - Exploring the WAD File

The Links_Data_Package and the Mesh_Pointers_List, taken together, allow us to define a
hierarchical skeleton for the 3D models in the Movables_Table.

From the movables table we get the number of mesh pointers. This tells us how many meshes
the model has, and how many links (links = meshes – 1). Through the mesh pointers list we get
to the meshes themselves. Through the links data package we get the hierarchical information for
a skeletal representation of the model.

FIG. 39 – The Mesh_Pointers_List supplies the meshes, but it is the
Links_Data_Package that places them in their proper locations, connected the
proper way. (custom wad by Litepulsar - Stargate - from Lara’s Level Base).

FIG. 40 – The Links_Data_Package is addressed by the
index of the first sint32 of the link’s record. The record
stores the hierarchical operation code followed by the three
coordinates of the pivot point relative to its parent.

Exploring the WAD File - WAD.43 -

FIG. 41 – Lara’s Body Meshes and the correspondent Joint Meshes. Combined together they constitute the final Skin.

Considering only the sequence of 14 opCodes, a typical sequence for any of the above links is:

2 0 0 3 0 0 1 2 0 0 3 0 0 1

Translation of this sequence, applied to the 15 Lara’s Body Meshes:
• Take the HIPS mesh and use it as the root mesh.

• 2 = push the HIPS into the stack. Link the LEFT THIGH to the HIPS and offset (dx, dy, dz).

• 0 = stack not used. Link the LEFT SHIN to the LEFT THIGH and offset (dx, dy, dz).

• 0 = stack not used. Link the LEFT FOOT to the LEFT SHIN and offset (dx, dy, dz).

• 3 = read the HIPS from the stack. Link the RIGHT THIGH to the HIPS and offset (dx, dy, dz).

• 0 = stack not used. Link the RIGHT SHIN to the RIGHT THIGH and offset (dx, dy, dz).

• 0 = stack not used. Link the RIGHT FOOT to the RIGHT SHIN and offset (dx, dy, dz).

• 1 = pull the HIPS from the stack. Link the TORSO to the HIPS and offset (dx, dy, dz).

• 2 = push the TORSO into the stack. Link the RIGHT INNER ARM to the TORSO and offset (dx, dy, dz).

• 0 = stack not used. Link the RIGHT OUTER ARM to the RIGHT INNER ARM and offset (dx, dy, dz).

• 0 = stack not used. Link the RIGHT HAND to the RIGHT OUTER ARM and offset (dx, dy, dz).

• 3 = read the TORSO from the stack. Link the LEFT INNER ARM to the TORSO and offset (dx, dy, dz).

• 0 = stack not used. Link the LEFT OUTER ARM to the LEFT INNER ARM and offset (dx, dy, dz).

• 0 = stack not used. Link the LEFT HAND to the LEFT OUTER ARM and offset (dx, dy, dz).

• 1 = pull the TORSO from the stack. Link the HEAD to the TORSO and offset (dx, dy, dz).

- WAD.44 - Exploring the WAD File

FIG. 42 - Another solution for Lara’s body: The Body Meshes also cover the Joints, the Joint Meshes are NULL, in the
insert the Ponytail is shown textured with magenta.

There are other solutions for the Links_Data_Package. The image above shows a custom WAD
file displaying an ARTIC outfit. In this case the Body Meshes are built in such a way that they
also cover the Joints, no need for extra Joint Meshes. However, the Joint Meshes must be
present in the Links_Data_Package. One way for solving this is to declare the Joint Meshes,
even assigning a Bounding Sphere, but insert them as zero-vertices meshes. As dummies, as
NULL meshes. In the outfit above we can see that this NULL solution was implemented. Another
possibility would be to maintain the Joint Meshes but map them with magenta, therefore making
them invisible. As we can see in the insert in the outfit above, this other solution was implemented
for the Ponytail. Lara still has it, but it is invisible.

We’ve seen how a complex Lara’s body is handled by the stack of pivot points.
But what happens if the Movable has one mesh only? And there are plenty of those.
The one-mesh is considered to be the root mesh and has no entry in the Links_Data_Package.
No children, no joints. Quite logical.
15 meshes have 14 joints, 2 meshes have 1 joint, 1 mesh has zero joints.
One-mesh-movables do not need entries in the links package, but the linkIndex field still exists in
the Movables_Table, so something, just something, must be put there. It will not use it, anyway!
A variation of this reasoning is found in custom WAD files processed by WadMerger: it places a
zero in the linkIndex of the Movables_Table. This is also valid, because the index is not used.

Exploring the WAD File - WAD.45 -

One more issue, about the internal structure of the
Links_Data_Package. The original WAD files from Eidos /
Core Design have a well-behaved internal structure. The value
of Links_Num_DWords is a multiple of four integers, the
Link records are located at indices which are a multiple of
four. But the custom WAD files processed by WadMerger
reveal another possibility. TRLE accepts that the link be
located at any index, it does not expect a multiple of four.
Where the original WAD file has a link at index 56, a custom
WAD file may have the same link at index 59.

The several Links for a given Movable are still packed as
contiguous, but the starting point for each pack may be
located at some random index and there may be garbage in-
between the packs.

FIG. 43 – To accommodate the WadMerger’s variation, which leaves three
extra bytes between the Links, my exploratory application creates an extra
slot without a link number. It only shows the link index for the extra bytes.

Building up the opCodes for the Links_Data_Package calls for some caution. The following
examples, extracted from KARNAK, illustrate the subject:

FIG. 44 - The same baddie, with and without weapons. They are in fact exactly the same model, but in the no-weapons
baddie the geometry for the weapons was reduced to a few triangles, and even those were mapped with magenta,
rendering them invisible. No sword, no uzi. The Links for these baddies could be the same. However, Movable 043 (on
the left) has 27 mesh pointers and Movable 418 (on the right) has 28 mesh pointers. The no-weapons baddie has one
extra mesh.

0

1

2

3

4

56
7

8

9

10

11

12

13
14

15
16

17
18

19

20

- WAD.46 - Exploring the WAD File

Considering only the sequence of 26 opCodes, of Movable 043 :

2 0 0 3 0 0 3 1 2 0 0 3 0 0 2 0 3 0 3 0 1 0 1 0 0 0

This is a well-behaved package. The number of PULL equals the number of PUSH.
This is not always the case, as we can see next.
Now considering only the sequence of 27 opCodes, of Movable 418 :

2 0 0 3 0 0 3 1 2 0 0 3 0 0 2 0 3 0 3 0 1 0 1 0 0 0 1

This is not a well-behaved package. There is an extra PULL in the end of the sequence.
It pulls what? Application developers must be aware of this situation. Existing this extra PULL, the
stack must be able to keep track of the root mesh to supply it in cases like this.

Now, a skeleton for a four-legged model. The example below is Movable 051 in COASTAL.

FIG. 45 - The numbers represent the steps for the construction of
the body of the crocodile, with 21 meshes [0 .. 20] and 20 joints.

Considering the sequence of opCodes:

• = Take the piece(0) and use it as the root mesh.

2 = PUSH piece(0) into the stack and link piece(1) to it.

2 0 0 = PUSH piece(1) into the stack and link piece(2) to it, then chain (3) and (4).

3 0 0 = Read piece(1) from the stack and link piece(5) to it, then chain (6) and (7).

1 0 = PULL piece(1) from the stack and link piece(8) to it, then chain (9).

1 = PULL piece(0) from the stack and link piece(10).

2 0 0 0 = PUSH piece(10) into the stack and link piece(11) to it, chain (12), (13) and (14).

3 0 0 = Read piece(10) from the stack and link piece(15) to it, then chain (16) and (17).

1 0 0 = PULL piece(10) from the stack and link piece(18) to it, chain (19) and (20).

Exploring the WAD File - WAD.47 -

Keyframes_Num_Words (uint32).
Size of the Keyframes_Data_Package, expressed in word (uint16) units. Given that a word
takes 2 bytes, the total number of bytes used to store the keyframes data is given by:

package_size_in_words = Keyframes_Num_Words

package_size_in_bytes = 2 * Keyframes_Num_Words

Keyframes_Data_Package (Keyframes_Num_Words * 2 bytes).
This package stores all the bounding boxes, root mesh offsets and pivot angles for all the
animation segments in the Animations_Table. Description:

bb1x (sint16) coordinate, bounding box.
bb2x (sint16) coordinate, bounding box.
bb1y (sint16) coordinate, bounding box.
bb2y (sint16) coordinate, bounding box.
bb1z (sint16) coordinate, bounding box.
bb2z (sint16) coordinate, bounding box.
offx (sint16) coordinate, root mesh offset.
offy (sint16) coordinate, root mesh offset.
offz (sint16) coordinate, root mesh offset.
keys (variable words) package of pivot point angles.

Yes, another unfortunate situation in the WAD file format. Another one.
The sequence of angles has an undefined size because some angles will
be coded into one word, some will be coded into a dword. We know the
number of angles from the number of meshes in the movable model, we
know the total number of words taken by the angles from the animation
table, but we do not know how that number of angles uses the available
space. The angles package needs to be parsed. Most likely there will be
some padding after the angles, some unused words. My exploratory
application shows such padding. Probably the extra space is just a
safeguard against a worst case of angles coding.

This package can be accessed from the Movables_Table or from the Animations_Table. Being
a package, it needs to be accessed by offset.

FIG. 46 – Keyframes Package for a Bat, highlighting some keyframes. Only the body of the table is stored in the WAD
file. The seven left columns are implemented by my exploratory application.

- WAD.48 - Exploring the WAD File

Most of the data in the Keyframes_Data_Package is quite easy to decode. The bounding box
and the root mesh offset are self-explanatory. The angles data is not so obvious. Several steps
are needed to decode the angles. First we go to the Movables_Table to find out about the
number of meshes, stored under numPointers. Then we go to the Animations_Table to find out
about the size of the keyframe record, in word units, stored under keyframeSize. From the
number of words of the keyframe we subtract 9 words for the bounding box and the root mesh
offset. The remaining words will be shared by the coded angles and by the padding words.

Up to this point we only know how many they are and where they are, per keyframe record.
Being angles related to pivot points, the angles are coded as sets, coding the rotation in X,Y,Z.

set = [rotateX, rotateY, rotateZ]

It can be expected that decoding the angle sets will return those three values. In fact this is one of
the two ways for coding the angle sets. But there are situations where only one of those rotations
can happen, therefore only one of those components changes and the other components have a
value of zero. As a mere example, if the knee can only rotate in X, then Y and Z are zero and
there is no need to code them. For similar cases there is another way for coding angle sets that
assumes that only one rotation is coded.

set = [rotateX, 0, 0]
set = [0, rotateY, 0]
set = [0, 0, rotateZ]

We have four different possibilities. From all this derives the following: if the angle set specifies a
three-axes rotation, a uint32 is used, if the angle specifies a one-axis rotation, a uint16 is used.
When reading through the angles package, one word at a time, we need to check the most
significant two bits of the word, to find the proper axes type.

axes = angle_set and $C000

If axes = $0000 then it is a three-axes rotation, uses a uint32.
If axes = $4000 then it is a one-axis rotation in X, uses a uint16.
If axes = $8000 then it is a one-axis rotation in Y, uses a uint16.
If axes = $C000 then it is a one-axis rotation in Z, uses a uint16.

If axes = $0000, a three-axes rotation that uses a uint32, then we must read the next word and
combine it with the one we already have.

angle_set = angle_set * $10000 + next_word

Out of these 32 bits, 2 were used to code the axes, the remaining 30 bits are used to code the
three rotations. 10 bits per rotation. Given angle_set as a uint32, we extract the rotations like this:

rotationZ = angle_set and $3FF
angle_set = angle_set shr 10
rotationY = angle_set and $3FF
angle_set = angle_set shr 10
rotationX = angle_set and $3FF

Exploring the WAD File - WAD.49 -

Considering the other situations, one-axis rotation only, given angle_set as a uint16, out of these
16 bits, 2 were used to code the axis, the remaining 14 bits are used to code the rotation:

rotation = angle_set and $3FFF

The meaning of this value depends on the two most significant bits, as shown before.
Finally, these values must be converted into regular angle values. The conversion factor is:

1024 = 360 degrees for a three-axes rotation
4096 = 360 degrees for a one-axis rotation

So if we have a three-axes rotation, the final corrections are:

rotationX = rotationX * 360 / 1024
rotationY = rotationY * 360 / 1024
rotationZ = rotationZ * 360 / 1024

In the case of a one-axis rotation, the final correction is, the other two rotations being zero:

rotation = rotation * 360 / 4096

And this completes the parsing of the Animation Section.

FIG. 47 - Animations table, states changes and dispatches, commands, pivot links. Keyframes package with additional
columns introduced by my exploratory application.

- WAD.50 - Exploring the WAD File

Blank page

Exploring the WAD File - WAD.51 -

Section 5 – Models

Num_Movables (uint32).
Number of Movable Models stored in the Movables_Table.
Most Movable Models are made of a single mesh associated to some animations, or by several
meshes linked by articulated and animated joints, organized as a skeleton.

Movables_Table (Num_Movables * 18 bytes).
This table lists all the Movable Models stored in the WAD file. The Movables_Table holds links to
the Mesh_Pointers_List, to the Links_Data_Package, to the Keyframes_Data_Package and to
the Animations_Table.

This table is the entry point to access the Movable Models in the WAD file. The indexes and the
offsets it contains are used to fetch data from other tables and packages. Description:

obj_ID (uint32) unique ID number for this Movable.
numPointers (uint16) number of mesh pointers.
pointersIndex (uint16) index in the pointers list.
linksIndex (uint32) index of the pivot point links package.
keyframeOffset (uint32) offset in the keyframes package.
animsIndex (sint16) index in the animations table.

FIG. 48 – Movable models table, containing the ID of the
movable and indexes or offsets to some other tables.

- WAD.52 - Exploring the WAD File

The meshes that compose a movable model are stored in a random access package and are
accessed by offset. The offsets of the meshes are stored in a sequencial access list. This list is, in
turn, accessed by index, through the pointersIndex. The number of meshes is given by the
number of pointers, in numPointers.

The skeleton associated to a movable model consists of a sequence of hierarchical links. The
links are stored in a random access package and accessed by the index of its first integer value,
as in linksIndex. The number of links is not stored in the movable’s table, but can be deduced
from the number of meshes (num_links = numPointers - 1). Deducing the number of links from
the movable’s table would be possible if the links package was treated as a sequencial access
package. Two consecutive indices, subtracted and divided by four, would yield the correct
number. Unfortunately not all applications produce well-behaved link packages. Better use the
number of pointers minus one, instead.

The field keyframeOffset points to the first keyframe of the current model in the huge keyframes
package. Nothing else can be deduced from here, further analysis of the keyframes must be done
in the Animations_Table.

The entry in the animsIndex is usually a positive number, an index to a table, but it may be -1,
which means that there is no animation for the Movable. The engine will handle the Movable.
Examples: Lara’s crowbar animation and the bullet cartridges expelled by the weapons. Other
models, like Lara’s ponytail, have an index to the Animations_Table but then the animation is
empty and the ponytail is handled by the engine.

The number of animations in the current model is obtained subtracting two consecutive values of
the animsIndex field, ignoring the -1 values.

FIG. 49 – Movable models table, OpenGL viewer displaying my favourite custom outfit.
(“Stargate” by Litepulsar, available from Lara’s Level Base)

Exploring the WAD File - WAD.53 -

Num_Statics (uint32).
Number of Static Models stored in the Statics_Table.
The Static Models are made of one single mesh, they have no hierarchies, no Links, they have no
animations. Like every other mesh, Statics are just a collection of polygons. They are used for
props, ornaments, architectural elements, etc. If for some reason a static model is broken down in
several pieces, those pieces need to be handled separately as if they were individual models. This
happens a lot with big statues, which are broken down into smaller pieces.

Statics_Table (Num_Statics * 32 bytes).
This table lists all the Static Models stored in the WAD file. Each record in this table is 32 bytes
long and contains an index to the Mesh_Pointers_List, which in turn will have a pointer to the
mesh itself in the Mesh_Data_Package. The record also stores two bounding boxes, one for
visibility and the other for collision purposes. Finally, the record stores some flags. Description:

obj_ID (uint32) unique ID number for this Static.
pointersIndex (uint16) index of a pointer to the mesh.
vx1 (sint16) coordinate, visibility bounding box.
vx2 (sint16) coordinate, visibility bounding box.
vy1 (sint16) coordinate, visibility bounding box.
vy2 (sint16) coordinate, visibility bounding box.
vz1 (sint16) coordinate, visibility bounding box.
vz2 (sint16) coordinate, visibility bounding box.
cx1 (sint16) coordinate, collision bounding box.
cx2 (sint16) coordinate, collision bounding box.
cy1 (sint16) coordinate, collision bounding box.
cy2 (sint16) coordinate, collision bounding box.
cz1 (sint16) coordinate, collision bounding box.
cz2 (sint16) coordinate, collision bounding box.
flags (uint16) some flags.

The visibility bounding box is probably used for rendering tests in-game, to check if the model
is to be rendered or not, the collision bounding box is used for collision detection in-game.

The flags field always takes the value 2 in the original WAD files for TRLE. Non-official WAD files
extracted directly from TR1,2,3 levels10 show other values : 0, 3, but not very often. The meaning
of the flags field is unknown.

FIG. 50 – From SETTOMB, an example of a static model made of two different pieces.

10 Extracted by Wee Bald Man, mid-2002 using TR2WAD. These WAD files can be found on-line at
http://www.earthacademy.net/TR-Classic/

- WAD.54 - Exploring the WAD File

FIG. 51 – Static models table, OpenGL viewer displaying a static model from CITY. The visibility bounding box is
represented with dotted dark line, the collision bounding box is represented with a solid clear line.

DISCUSSION TOPICS

Blank page

- DT.1 -

Discussion Topic 1 – Variables Nonsenseclature

Programming languages are supposed to be addressed to intelligent and inventive persons.
If so, how is it possible that the nomenclatures used by different languages to define their variable
types be so dumb and irrational? How is it possible that from language to language the definitions
be so different, even contradictory? How is it possible that such a simple and basic foundation of
the programming languages, apparently so easy to define, ends up being just another problem?

There was a time when a char would range from 0 to 127 because that was the range for the
characters in a font, and vice-versa. As a consequence, the range from 128 to 255 could not be
assigned to a char. Instead, that range was interpreted as negative, as -128 to -1, and char was
considered as a signed type.

There was a time when a byte would take care of the 0 to 255 range, always being interpreted as
positive and considered as an unsigned type.

And this was enough for the old 8-bit computer architectures.

There was a time when computers evolved to 16-bit architectures, which called for a new type
definition for 16-bit numbers. An int was capable of storing positive and negative numbers in 16
bits, and its range was therefore -32768 to 32767. This was a signed type.

There was a time when the unsigned 16-bit counterpart of an integer was a word, whose range
would go from 0 to 65535. A word could also be considered as a sequence of two bytes, whose
order, in-buffer, would be [b0,b1] for Intel microprocessors or [b1,b0] for the Motorola ones.

Whatever happened to that simplicity?

The arrival of the 32-bit architectures called for a definition of a 32-bit integer type. The int type
was already related to a 16-bit environment, so what name could we give to a 32-bit integer?
That’s when the big confusions started up. Poor thinking ahead and poor imagination led to the
renaming of the old 16-bit int to something else and “upgrading” the old int to a new 32-bit int.
Worse, different programming languages did those changes using different nomenclatures. The
final result was a complete disaster, unfit of the intelligence and inventiveness that programmers
are supposed to have.

The arrival of the 64-bit architectures poses the same problem again. The announcement of the
128-bit architectures poses it yet “another” again. The future etc-bits architectures will inevitably
pose this same problem several other “again’s”. Inevitably? Maybe not. Maybe programmers are
not in the mood to carry on supporting the present silliness.

I know I’m not, that’s why I’m writing this Discussion Topic. Let’s have a look at the problem, as it
is at the present time. Basically, in a 64-bit environment, we need to deal with these integers:

Signed 8-bits [-128 .. 127]
Signed 16-bits [-32,768 .. 32,767]
Signed 32-bits [-2,147,483,648 .. 2,147,483,647]
Signed 64-bits [-9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807]

Unsigned 8-bits [0 .. 255]
Unsigned 16-bits [0 .. 65,535]
Unsigned 32-bits [0 .. 4,294,967,295]
Unsigned 64-bits [0 .. 18,446,744,073,709,551,615]

- DT.2 -

 For the records, a shorter way of writing those numbers would be:

Signed 8-bits [-2^7 .. 2^7 - 1]
Signed 16-bits [-2^15 .. 2^15 - 1]
Signed 32-bits [-2^31 .. 2^31 - 1]
Signed 64-bits [-2^63 .. 2^63 - 1]

Unsigned 8-bits [0 .. 2^8 - 1]
Unsigned 16-bits [0 .. 2^16 - 1]
Unsigned 32-bits [0 .. 2^32 - 1]
Unsigned 64-bits [0 .. 2^64 - 1]

Well, my first reaction to this is that those numbers are growing up into ridiculous sizes.
A signed 32-bit integer holds numbers up to 2 gigabytes. The unsigned equivalent holds numbers
up to 4 gigabytes. As for the 64-bit, I don’t even know what to call them.

Now lets see the nomenclatures that several programming languages are using now-a-days:

C/C++ C#
Signed 8-bits signed small int signed char small sbyte
Signed 16-bits signed short int short short
Signed 32-bits signed long int long int
Signed 64-bits signed hyper int hyper, LONGLONG long
Unsigned 8-bits unsigned small int unsigned char BYTE, UCHAR byte
Unsigned 16-bits unsigned short int wchar_t USHORT, WORD ushort, char
Unsigned 32-bits unsigned long int ULONG, DWORD uint
Unsigned 64-bits unsigned hyper int DWORDLONG ulong

One obvious reaction of the C/C++ programmers against this craziness was to use some of the
shortcuts or macros described in the 3rd column. The 4th column shows a simpler notation used by
C# where the references to signed-unsigned types are included in the type as a suffix. We see,
however, incoherencies building up already. In C/C++ a long is a 32-bit integer, whereas in C# a
long is a 64-bit integer. In C/C++ int can be omitted, in C# it becomes a signed 32-bit integer.

DELPHI
Signed 8-bits Shortint
Signed 16-bits Smallint
Signed 32-bits Longint Integer
Signed 64-bits Int64
Unsigned 8-bits Byte Char, AnsiChar
Unsigned 16-bits Word WideChar DWord
Unsigned 32-bits Longword wchar_t Cardinal
Unsigned 64-bits -

Delphi goes along with an integer being a signed 32-bit type, and uses traditional notations like
byte or word (Delphi is not case-sensitive). At first sight it looks similar to the C/C++ notation for
the signed integers, but a second look shows a problem. In both the reference to “long”
designates a 32-bit type, but the references to “small” and “short” are crossed over.
Confusion keeps on building up.

- DT.3 -

Another reference language is Java, which brings us yet another source of confusions. It only
defines signed types for the integers. To define a pseudo-unsigned type, we must use the next
bigger signed type and mask the redundant top bits. The only true unsigned integer type is char,
a 16-bits type. This could easily enter a dictionary as a definition for “brainless”.

JAVA
Signed 8-bits byte
Signed 16-bits short
Signed 32-bits int
Signed 64-bits int64
Unsigned 8-bits -
Unsigned 16-bits char
Unsigned 32-bits -
Unsigned 64-bits -

Java also defines an int as a signed 32-bits integer. The use of byte as a designation for the
signed 8-bits integer is quite unfortunate, uninspired and misplaced.
Where the other languages consider a byte as an unsigned type ranging from 0 to 255, along
with tradition, Java “innovates” and redefines a byte to a range from -128 to 127. This only adds to
the confusion already installed. Software portability? What a joke!

All this makes me wonder if the Programming Language designers are not just mocking us all.
What is it with the nomenclature of integer types that makes it so dumb?

However, the basic issue is quite simple.
The notation proposed in the TRosettaStone is an example of a simple solution.

Signed 8-bits bit8
Signed 16-bits bit16
Signed 32-bits bit32
Unsigned 8-bits bitu8
Unsigned 16-bits bitu16
Unsigned 32-bits bitu32

Somewhat similar to this notation, some languages are using int64 as a description of the 64-bit
integers. In some discussion forums where this issue was brought up, the tendency was to name
the 64-bits, 128-bits, etc, within these lines. Something like int8, int16, int32, int64 could have
been adopted long time ago, and avoid the nonsense we see now-a-days. A nomenclature easy
to understand, expandable for future computer architectures, no need to redefine older types, very
clear in concern to the signed-unsigned issue, could and should have been adopted by all
programming languages. Why was it not?

INTEGERS
Signed 8-bits sint8
Signed 16-bits sint16
Signed 32-bits sint32
Signed 64-bits sint64
Unsigned 8-bits uint8
Unsigned 16-bits uint16
Unsigned 32-bits uint32
Unsigned 64-bits uint64

- DT.4 -

Blank page

